The semi-smooth Newton method for variationally discretized control constrained elliptic optimal control problems; implementation, convergence and globalization

نویسندگان

  • Michael Hinze
  • Morten Vierling
چکیده

Combining the numerical concept of variational discretization introduced in [11, 12] and semi-smooth Newton methods for the numerical solution of pde constrained optimization with control constraints [9, 22] we place special emphasis on the implementation and globalization of the numerical algorithm. We prove fast local convergence of a globalized algorithm and illustrate our analytical and algorithmical findings by numerical experiments. Mathematics Subject Classification (2010): 49J20, 49K20, 49M15

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A globally convergent semi-smooth Newton method for control-state constrained DAE optimal control problems

We investigate a semi-smooth Newton method for the numerical solution of optimal control problems subject to differential-algebraic equations (DAEs) and mixed control-state constraints. The necessary conditions are stated in terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum principle is transformed into an equivalent nonlinear and semi-smooth equati...

متن کامل

Semi-smooth Newton Methods for Optimal Control of the Dynamical Lamé System with Control Constraints

In this paper semi-smooth Newton methods for optimal control problems governed by the dynamical Lamé system are considered and their convergence behavior with respect to superlinear convergence is analyzed. Techniques from Kröner, Kunisch, Vexler (2011), where semi-smooth Newton methods for optimal control of the classical wave equation are considered, are transferred to control of the dynamica...

متن کامل

Mesh Independence and Fast Local Convergence of a Primal-dual Active-set Method for Mixed Control-state Constrained Elliptic Control Problems

A class of mixed control-state constrained optimal control problems for elliptic partial differential equations arising, for example, in Lavrentiev-type regularized state constrained optimal control is considered. Its numerical solution is obtained via a primal-dual activeset method, which is equivalent to a class of semi-smooth Newton methods. The locally superlinear convergence of the active-...

متن کامل

Optimal Control on an Elliptic System with Convex Polygonal Control Constraints

The semi-smooth Newton method for optimal control problems for systems of partial differential equations with polygonal constraints on the controls is developed. The Newton derivatives are characterized for the case of systems of dimension two, superlinear convergence is verified, and a simple proof-of-concept numerical example is provided.

متن کامل

Preconditioned Solution of State Gradient Constrained Elliptic Optimal Control Problems

Elliptic optimal control problems with pointwise state gradient constraints are considered. A quadratic penalty approach is employed together with a semismooth Newton iteration. Three different preconditioners are proposed and the ensuing spectral properties of the preconditioned linear Newton saddle-point systems are analyzed in dependence on the penalty parameter. A new bound for the smallest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 27  شماره 

صفحات  -

تاریخ انتشار 2012